Root-microbe systems: the effect and mode of interaction of Stress Protecting Agent (SPA) Stenotrophomonas rhizophila DSM14405T
نویسندگان
چکیده
Stenotrophomonas rhizophila has great potential for applications in biotechnology and biological control due to its ability to both promote plant growth and protect roots against biotic and a-biotic stresses, yet little is known about the mode of interactions in the root-environment system. We studied mechanisms associated with osmotic stress using transcriptomic and microscopic approaches. In response to salt or root extracts, the transcriptome of S. rhizophila DSM14405(T) changed drastically. We found a notably similar response for several functional gene groups responsible for general stress protection, energy production, and cell motility. However, unique changes in the transcriptome were also observed: the negative regulation of flagella-coding genes together with the up-regulation of the genes responsible for biofilm formation and alginate biosynthesis were identified as a single mechanism of S. rhizophila DSM14405(T) against salt shock. However, production and excretion of glucosylglycerol (GG) were found as a remarkable mechanism for the stress protection of this Stenotrophomonas strain. For S. rhizophila treated with root exudates, the shift from the planktonic lifestyle to a sessile one was measured as expressed in the down-regulation of flagellar-driven motility. These findings fit well with the observed positive regulation of host colonization genes and microscopic images that show different colonization patterns of oilseed rape roots. Spermidine, described as a plant growth regulator, was also newly identified as a protector against stress. Overall, we identified mechanisms of Stenotrophomonas to protect roots against osmotic stress in the environment. In addition to both the changes in life style and energy metabolism, phytohormons, and osmoprotectants were also found to play a key role in stress protection.
منابع مشابه
Friends or foes: can we make a distinction between beneficial and harmful strains of the Stenotrophomonas maltophilia complex?
Stenotrophomonas maltophilia is an emerging multi-drug-resistant global opportunistic pathogen of environmental, mainly plant-associated origin. It is also used as a biocontrol or stress protecting agent for crops in sustainable agricultural as well as in bioremediation strategies. In order to establish effective protocols to distinguish harmless from harmful strains, our discussion must take i...
متن کاملA molecular biological protocol to distinguish potentially human pathogenic Stenotrophomonas maltophilia from plant-associated Stenotrophomonas rhizophila.
In recent years, the importance of the Gram-negative bacterium Stenotrophomonas as an opportunistic pathogen as well as in biotechnology has increased. The aim of the present study was to develop new methods for distinguishing between strains closely related to the potentially human pathogenic Stenotrophomonas maltophilia and those closely related to the plant-associated Stenotrophomonas rhizop...
متن کاملSynthesis of the compatible solutes glucosylglycerol and trehalose by salt-stressed cells of Stenotrophomonas strains.
In this study, physiological processes were analysed, which are involved in salt acclimation of two Stenotrophomonas species, Stenotrophomonas maltophilia strain DSM 50170 and Stenotrophomonas rhizophila strain DSM 14405. S. maltophilia accumulated trehalose as the only osmolyte, whereas S. rhizophila produced additionally to trehalose glucosylglycerol (GG). The different spectrum and amounts o...
متن کاملEffects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants
Plant-associated bacteria fulfill important functions for plant growth and health. However, our knowledge about the impact of bacterial treatments on the host's microbiome and physiology is limited. The present study was conducted to assess the impact of bacterial inoculants on the microbiome of chamomile plants Chamomilla recutita (L.) Rauschert grown in a field under organic management in Egy...
متن کاملInitial Steps towards Biocontrol in Hops: Successful Colonization and Plant Growth Promotion by Four Bacterial Biocontrol Agents
Verticillium wilt, caused by Verticillium nonalfalfae and V. dahliae, is a devastating disease in hops that can cause considerable economic crop losses. The perennial use of hops combined with the long persistence of the pathogen in soil make it difficult to suppress the disease with conventional measures. Biological control agents (BCA) are the basis of an environmentally friendly plant protec...
متن کامل